
IC
S

E
’0

1
-

U
C

M
s

Daniel Amyot, Gunter Mussbacher
Strategic Technology, Mitel Networks

Bridging the Requirements /
Design Gap in Dynamic

Systems with Use Case Maps

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 2

ICSE’01 - Use Case MapsStrategic Technology

Objectives

◆ Introduce Use Case Maps (UCMs) Concepts and the UCM
Notation

◆ Understand the relationship of UCMs with use cases, test cases,
high level architecture, more detailed behavioral diagrams, and
more detailed structural diagrams

◆ Give an overview on validation of UCMs (feature interaction),
performance analysis based on UCMs, and UCM styles

◆ Compare and contrast Use Case Maps with other modeling
techniques which focus on the same general problem area

◆ Understand the benefits of UCMs and how UCMs fit into use-
case driven software development processes

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 3

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps
(UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions

◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs

◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator
◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 4

ICSE’01 - Use Case MapsStrategic Technology

Use Case Maps (UCMs)

◆ UCMs stands for Use Case Maps – a graphical
notation that allows illustrating a scenario path
relative to the components involved in the scenario
(gray box view of system)

◆ UCMs are a scenario-based software engineering
technique for describing causal relationships between
responsibilities of one or more use cases

◆ UCMs show related use cases in a map-like diagram
◆ A map shows the progression of scenarios along use

cases

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 5

ICSE’01 - Use Case MapsStrategic Technology

Use Case Maps (UCMs)

◆ The intent of UCMs is to facilitate reusability of
scenarios across a wide range of architectures and to
guide the design of high level architecture

◆ UCMs have a history of application to the description
of object-oriented systems and reactive systems in
various domains

– Telecommunication, wireless, airline reservation, elevators,
railway, agents, network management applications, web
applications, graphical user interfaces, drawing packages,
multimedia applications, banking applications, object-
oriented frameworks, "work patterns" of software engineers,
etc.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 6

ICSE’01 - Use Case MapsStrategic Technology

History of Use Case Maps

◆ End of 1980’s at Carleton University, Canada
– Buhr (design) and Woodside (performance)

◆ Slices: Vigder and Buhr, 1992
◆ Timethreads: Buhr and Casselman, 1993
◆ Use Case Maps: Buhr and Casselman, 1995
◆ Still evolving…

– Scenario definition
– Model generation (e.g. UCM to MSC)
– Standardization
– UCM patterns and styles
– …

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 7

ICSE’01 - Use Case MapsStrategic Technology

Use Case Maps Web Page

◆ http://www.UseCaseMaps.org/
◆ Prime source of information about UCMs
◆ Supports the UCM User Group

– Nearly 200 members. Mailing list and newsletter.

◆ UCM Virtual Library
– Over 50 publications and 25 presentations

◆ Tools (UCM Navigator and others)
◆ XML Document Type Definition (DTD)
◆ UCMs and UML

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 8

ICSE’01 - Use Case MapsStrategic Technology

Why Use Case Maps?

◆ Bridge the modeling gap between requirements
(use cases) and design

– Link behavior and structure in an explicit and visual way
– Provide a behavioral framework for making (evaluating)

architectural decisions at a high level of design
– Characterize the behavior at the architecture level once the

architecture is decided

◆ Convey a lot of information in a compact form
◆ Use case maps integrate many scenarios - enables

reasoning about potential undesirable interactions of
scenarios

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 9

ICSE’01 - Use Case MapsStrategic Technology

Why Use Case Maps?

◆ Provide ability to model dynamic systems where
scenarios and structures may change at run-time

– E-commerce applications
– Telecommunication systems based on agents

◆ Simple, intuitive, very low learning curve
◆ Excellent documentation tool – document while you

design
◆ Effective learning tool for people unfamiliar with

domain

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 10

ICSE’01 - Use Case MapsStrategic Technology

Information Needed to Construct
Use Case Maps

◆ Informal requirements or use cases or extensive
domain knowledge

◆ Responsibilities either stated or inferred from
requirements/use cases/domain knowledge

◆ Clearly defined interface between the environment
and the system (leads to start and end points of
paths)

◆ Architectural components (optional)
– High level description of these components (their nature, the

relationships between them)
– Vision of architectural structure

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 11

ICSE’01 - Use Case MapsStrategic Technology

The Design Pyramid

 Requirements

 High-level Design

 Detailed design

 Implementation

NFR
Use cases

Problem modeling

Use Case Maps

Sequence/collaboration diagrams, statechart
diagrams, class/object diagrams,

component/deployment diagrams (UML);
message sequence charts, SDL (ITU-T)

Code

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 12

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - Basic

UCM Example: Commuting

secure
home

X X

commute

X

take
elevator

ready
to

leave
home

in
cubicle

home transport elevator

Responsibility PointBasic Path
(from circle to bar)

Component
(generic)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 13

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - Hierarchy

UCM Example: Commuting

ready
to

leave
home

in
cubicle

home transport elevator

secure
home

X X

commute

X

take
elevator

secure
home

commute
take

elevator

Dynamic Stub
(selection policy)

Static Stub

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 14

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - Simple Plug-in

UCM Example: Commute - Car (Plug-in)

transport

X

drive car

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 15

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - AND/OR

UCM Example: Commute - Bus (Plug-in)

person

read
Dilbert

X

X

take 182

AND Fork OR JoinOR Fork AND Join

transport

X
take 97

X
take 95

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 16

ICSE’01 - Use Case MapsStrategic Technology

Waiting Place

elevator
arrived

UCM Notation -
Waiting Place / Timer

UCM Example: Take Elevator - Default (Plug-in)
elevator

call
elevator

X X

select
floor

X

take
stairs

Timeout Path

elevator
arrived

Timer
(special waiting place) Note: Waiting places may be regular, memory, signal, or delay.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 17

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation -
Simple Plug-in with Stub

UCM Example: Secure Home - Default (Plug-in)
home

X

lock dooralarm

in

out2

out1

Possible plug-ins for a stub with one in path and two out paths:

out1
in

out2

in out1 in out2 Possible but counterintuitive
(avoid use):

in private
out1

in
private

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 18

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation -
Component - Pool

UCM Example: Alarm - Installed (Plug-in)

accept
code
X X

check
code

home

alarmed
[matched]

[not
matched]

Pool
(component)

Dynamic ResponsibilityDirection

alarm system

get code

not alarmed

[quit]

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 19

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - Component -
Object, Process & Stack
Generic UCM Example

start
point

end
point

name 1

Process
(active)

Object
(passive)

Component Stack
(for any kind of component)

name 2
name 3

action 1

X X

action 2

X

action 3

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 20

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - Shared Stub

Generic UCM Example

start
point

end
point

name 1

Shared Static Stub Shared Dynamic Stub

name 2 name 3

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 21

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation - Shared Stub

Generic UCM Example
name 1

in out
Shared NotShared

name 2

Shared (Plug-in)

name 1

in out

name 2

NotShared (Plug-ins)

name 1name 2

in

out

name 2

in

out

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 22

ICSE’01 - Use Case MapsStrategic Technology

Key Points -
UCM Introduction & Notation

◆ Modeling behavioral aspects of a system
– UCM path including all path elements
– More abstract than message exchanges (causal)

◆ Modeling structural aspects of a system
– UCM components

◆ Quite similar to the concept of roles in UML
◆ Represent a slice of an architectural entity as required in

a specific scenario

◆ Allocating behavior to structure
– Place responsibility in component

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 23

ICSE’01 - Use Case MapsStrategic Technology

Key Points -
UCM Introduction & Notation

◆ UCMs (Use Case Maps) provide an integrated view
of behavior and structure and bridge the conceptual
gap between requirements and design

◆ UCMs are intuitive and easy to learn
◆ UCMs provide a gray-box view of the system
◆ The basic elements of the UCM notation are paths,

start points, end points, responsibilities, static and
dynamic stubs, AND/OR forks/joins, waiting places &
timers, and components with dynamic responsibilities

◆ UCMs may provide reusable behavioral patterns
even when the architecture evolves

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 24

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM
Notation

◆ Enhancing UCMs with Formal Scenario Definitions

◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs
◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 25

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation -
Dynamic Aspects - Slot

UCM Example: Commuting

ready
to

leave
home

in
cubicle

home elevator

Slot
(component)

Dynamic Responsibility

person user

secure
home

X

transport

commuter

X
commute

X
take

elevator

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 26

ICSE’01 - Use Case MapsStrategic Technology

-

UCM Notation - Dynamic Aspects
- Dynamic Responsibilities

Generic UCM Example

start

end

Dynamic Responsibilities

slot A

pool A

pool B

++

create create

slot B

copy

destroy

-

destroy

+

move out

move intomove into

Generic UCM Example

start

end

slot A

pool A

pool B

++

create create

move out
slot B

move into
copy

move into

destroy

-

-

destroy

+

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 27

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation -
 Dynamic Aspects - Example 1

UCM Example: Drawing Tool
User System

Drawing Tools
start

exit

select drawing tool
get tool

display_drawing_tools

install_tool

draw

draw
Current Tool

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 28

ICSE’01 - Use Case MapsStrategic Technology

UCM Notation -
 Dynamic Aspects - Example 2

UCM Example: Plug’n’Play

Device
connected

Provisioning Site

Handlers

ServerSupplier

Telephone Switch
Driver

Device handler

Devices

Device
shipped

Handler
available

+Create
Handler

Store
Handler

Device
idle

[repeated use]

Perform
Operation

Get
Handler

Decode
Request Install

Handler

RequestHandler

Prepare
Operation

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 29

ICSE’01 - Use Case MapsStrategic Technology

Key Points - UCM Notation -
Dynamic Aspects

◆ Modeling dynamic aspects of a system
– Timers represent a basic dynamic element
– Dynamic stubs decide on dynamic variations in

behavior & structure with selection policies
– Dynamic responsibilities create and delete

dynamic components and manage their
movement along paths

– Slots are placeholders for dynamic components in
execution

– Pools are containers for dynamic components

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 30

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancin g UCMs with Formal
Scenario Definitions

◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs
◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 31

ICSE’01 - Use Case MapsStrategic Technology

Scenario Definitions

◆ Enhances the behavioral modeling capability
of UCM paths and path elements

◆ Requires a path data model (for conditions
at various points along the path)
– Currently, global Boolean unmodifiable variables
– In future, …

◆ Variables may possibly have different types
◆ Variables may be scoped to paths or components
◆ Values may be assigned to variables along a path
◆ Scenarios may be structured into sub-scenarios

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 32

ICSE’01 - Use Case MapsStrategic Technology

Scenario Definitions

◆ Requires a more formal definition of some
notational elements
– Currently, logical expressions with global variables

define OR forks & selection policies
– In future, timers & waiting places may be covered

◆ Scenario definitions consist of …
– Name of scenario (scenarios may be grouped for

convenience)
– Start point
– Set of initial values assigned to global variables

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 33

ICSE’01 - Use Case MapsStrategic Technology

Call Half:Originating

Device

Call Half: Terminating

start call

idle

ringback connect

dialing

directory number

fail

ring[not_busy]

wfa.t

answer

connect

end call.t

end call

idle.t

wait for answer

[answer]

[ring_timeout]
[busy]

+
create_TCH

disconnect

disconnect

UCM Example: Basic Call

Ring
Timeout

Number
Correct

Busy

EndCall

EndCall.t

Answer

BR: NumberCorrect BL: !NumberCorrectBR: !Busy BL: BusyBR: RingTimout BL: AnswerBR: EndCall.t BL: EndCallBR: Busy BL: !Busy

busy

[my_end_call]

[my_end_call]
talking.t

[others_end_call]

[busy]

[not_busy]

[others_end_call]

talking

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 34

ICSE’01 - Use Case MapsStrategic Technology

Call Half:Originating

Device

Call Half: Terminating

start call

idle

ringback connect

dialing

directory number

fail

[busy]

ring[not_busy]

wfa.t

answer

connect

talking

talking.t

end call.t

end call

[my_end_call]

[others_end_call]

[others_end_call]

[my_end_call]]

idle.t

busy

wait for answer

[answer]

[ring_timeout]

[not_busy]

[busy]

+
create_TCH

disconnect

disconnect

UCM Example: Basic Call
Busy

start call

dialing

directory number

[busy]

fail busy

+
create_TCH

idle.t

[busy]

Number
Correct

Busy

= Y

= YBusy = Y= YBusy

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 35

ICSE’01 - Use Case MapsStrategic Technology

Call Half:Originating

Device

Call Half: Terminating

start call

idle

ringback connect

dialing

directory number

fail

[busy]

ring[not_busy]

wfa.t

answer

connect

talking

talking.t

end call.t

end call

[my_end_call]

[others_end_call]

[others_end_call]

[my_end_call]]

idle.t

busy

wait for answer

[answer]

[ring_timeout]

[not_busy]

[busy]

+
create_TCH

disconnect

disconnect

start call

dialing

directory number

+
create_TCH

connect

talking

ringback

wait for answer

answer

end call

wfa.t[not_busy]

ring[not_busy]

UCM Example: Basic Call
Success

Number
Correct

Busy

EndCall

Answer

= Y

= N

= Y

= Y

Busy = NBusy = N

talking.t

connect

[answer]

idle

[my_end_call]

disconnect

[others_end_call]

idle.t

disconnect

EndCall = Y

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 36

ICSE’01 - Use Case MapsStrategic Technology

Scenario Highlight (UCMNAV 2)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 37

ICSE’01 - Use Case MapsStrategic Technology

Key Points - Scenario Definitions

◆ Path data model is not a problem domain data model
◆ Improves understanding of scenarios
◆ Scenario definitions are the foundation for more

advanced functionality such as …
– Highlighting of a scenario … available
– Animation of a scenario … just a small step
– Generation of MSCs … available
– Generation of test cases … just a small step
– Detection of feature interactions … early results
– Execution of UCMs … future research

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 38

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions

◆ Derivation of Structural
Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs
◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 39

ICSE’01 - Use Case MapsStrategic Technology

Derivation of Structure

◆ Simplest assumption: component in UCM is a role an
instance of a class plays

◆ From roles to class diagrams at problem domain
(conceptual) level or interface (specification) level,
not implementation level

◆ There is a high degree of freedom for the mapping
◆ Therefore, the following slides are only guidelines

– Look at all maps where component appears
– Map components to classes anywhere in inheritance

hierarchy
– N-to-M mapping between UCM components and classes

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 40

ICSE’01 - Use Case MapsStrategic Technology

Derivation of Structure

<<passive>>

<<active>>

<<abstract>> most likely

if data, not

dynamic component

generic component

slot

(may not be
mapped at all)

package

pool

process

object

most likely

most likely

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 41

ICSE’01 - Use Case MapsStrategic Technology

start

end

+

create

Derivation of Structure

<<class>>
constructor

public method

private method

responsibility
X

OR

one or
a series of

<<class>>

component A

component Z
…

class plays roles
A, …, and Z

component <<class>>

<<class>>
component may be

mapped onto several
classes

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 42

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Maps
Specifications

◆ Generation of Message Sequence Charts From UCMs
◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 43

ICSE’01 - Use Case MapsStrategic Technology

Generic Problem with Scenarios

◆ Given a set of scenarios capturing informal
(functional) requirements

◆ Specify (formally) the integration of scenarios
– Undesirable emergent behaviour may result…

◆ Validate, i.e. look for logical errors and check
against informal requirements

◆ Numerous tools and techniques can be
applied (e.g. functional testing)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 44

ICSE’01 - Use Case MapsStrategic Technology

UCM Validation by Inspection

◆ Several problems detectable by inspection
– Non-determinism in selection policies and OR-forks
– Erroneous UCMs
– Ambiguous UCMs, lack of comments

◆ Many feature interactions (FI) solved while
integrating feature scenarios together

◆ Remaining undesirable FI need to be detected!
– Many are located in stubs and selection

policies

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 45

ICSE’01 - Use Case MapsStrategic Technology

Feature Interaction

◆ Conflict between candidate plug-ins for the same
stub (preconditions of plug-ins are the same)

– Call waiting (CW) vs. automatic re-call (ARC)

busy out

CW

busy out

ARC

in out
ORIG TERM

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 46

ICSE’01 - Use Case MapsStrategic Technology

Feature Interaction

◆ Conflict between selected plug-ins (both plug-ins are
triggered by the same event)

– Flash key pressed with active call waiting (CW) and three
way calling (3WC)

in out

CW

in out

3WCFlash Flash

in out
ORIG TERM

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 47

ICSE’01 - Use Case MapsStrategic Technology

Feature Interaction

◆ Inconsistent behavior among different selected plug-
ins for the same stub (postconditions of plug-ins are
not the same)

– Terminating call screening (TCS) denies call whereas
automatic re-call (ARC) accepts call

in deny

TCS

in accept

ARC

in out
ORIG TERM

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 48

ICSE’01 - Use Case MapsStrategic Technology

Feature Interaction

◆ Unexpected behavior among different selected plug-
ins for different stubs (postconditions of plug-ins are
not the same)

– Originating call screening (OCS) denies call whereas call
forward (CF) redirects call to screened number

in deny

OCS

in redirect

CF

in out
ORIG TERM

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 49

ICSE’01 - Use Case MapsStrategic Technology

Analysis Model Construction

◆ Source scenario model ⇒ Target analysis model
◆ Q1. What should the target language be?

– Use Case Maps Specification ⇒ ?

◆ Q2. What should the construction strategy be?
– Analytic approach

◆ build-and-test construction

– Synthetic approach
◆ scenarios "compiled" into new target model
◆ interactive or automated

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 50

ICSE’01 - Use Case MapsStrategic Technology

Q1. Candidate Target Languages

?

Simple Structure
LTS

Kripke Structure
FSM

Petri Net

?
Logics

Temporal Logic
(LTL, CTL, …)

Prolog

?

High-Level
SDL

RoomCharts
CFSM

?
Relational
Algebra

? Process Algebra
CSP
CCS

LOTOS

UCM
Spec

Too low-level,
Gap too large

Always require
components

with interactions/
messages

Too different

LOTOS

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 51

ICSE’01 - Use Case MapsStrategic Technology

Why LOTOS?

◆ Formal syntax and semantics
◆ International standard (ISO 8807)
◆ Executable
◆ Good theories and tools for validation and

verification
– Testing
– Model checking
– Equivalence checking
– Symbolic execution
– …

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 52

ICSE’01 - Use Case MapsStrategic Technology

Complementary Yet Compatible!

Use Case Maps
Scenario notation,
readable, abstract,
scalable, loose, relatively
effortless to learn

Use Case Maps
Scenario notation,
readable, abstract,
scalable, loose, relatively
effortless to learn

LOTOS
Mature formal language,
good theories and tools for
V&V and completeness &
consistency checking.

LOTOS
Mature formal language,
good theories and tools for
V&V and completeness &
consistency checking.

Both
Focus on ordering of actions
Have similar constructs Æ simpler mapping
Handle specifications with or without components
Have been used to describe dynamic systems in the past
Have been used to detect feature interactions in the past

Both
Focus on ordering of actions
Have similar constructs Æ simpler mapping
Handle specifications with or without components
Have been used to describe dynamic systems in the past
Have been used to detect feature interactions in the past

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 53

ICSE’01 - Use Case MapsStrategic Technology

From UCMs to LOTOS

Start/end points
Responsibilities
Agents/components
Stubs

Plug-ins
Inter-path causality

Data, conditions

(Visible) gates
(Hidden) gates
Processes
Processes (implement
selection policies)
Processes
Inter-process
synchronization
Abstract Data Types

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 54

ICSE’01 - Use Case MapsStrategic Technology

SSPEC
PEC-V

ALU

-V
ALU

EE

Q2. Construction Strategies

–Formal and detailed source
model required

–Restricted use of languages
–May result in improper scenario
integrations

–Cannot take into consideration
NFRs and implementation
constraints

–Manual transformation, prone to
errors

–Verification required
–Time-consuming iterations

–Automated
–Correctness "ensured" by
construction

–Verification "not required"
–Very quick construction in one
iteration

–No formal source model required

–Exploit richness of source and
target languages

–Take into consideration NFRs and
implementation constraints

SyntheticAnalytic

B
en

ef
its

D
ra

w
ba

ck
s

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 55

ICSE’01 - Use Case MapsStrategic Technology

Specification-Validation
Approach with LOTOS and UCMs

Results
(Coverage)

Results
(Coverage)

Test Suite
(LOTOS)

Add tests if
necessary

Add tests if
necessary

Test Cases
Generation

Test Cases
Generation

Testing Framework
And Patterns

Requirements

Bound UCM

Prototype
(LOTOS)

Prototype
(LOTOS)

Results
(Functional)

Results
(Functional)

ConstructionConstruction

Modify if
necessary

Modify if
necessary

TestingTesting

AllocationAllocation

Scenarios
(UCM)

ArchitectureArchitecture

Construction
Guidelines

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 56

ICSE’01 - Use Case MapsStrategic Technology

Construction Guidelines

◆ Paths
– Interaction points and responsibilities
– Causal paths (inside components)
– Stubs and plug-ins
– Other path elements

◆ Structure
– Component topology
– Multiple unrelated paths in a component
– Inter-component causality

◆ Data
– Component identifiers, conditions, pools/DBs

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 57

ICSE’01 - Use Case MapsStrategic Technology

(* Announcement ADT definition… *)
req;
vrfy;
(

[busy] ->
(pbs; exit !busyTone)

[]
[idle] ->

(
prbs; exit !ringBackTone
|||

 upd; ring; exit !any:Announcement
)

)
>> accept signalTone: Announcement in
sig!signalTone; stop

Application to Unbound UCMs

req sig

vrfy

[idle]
[busy]

prbs

upd

pbs

ring

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 58

ICSE’01 - Use Case MapsStrategic Technology

Each component becomes
a process that implements
all the paths that cross it
(possibly from multiple
scenarios).

CalleeCaller Switch

req ring

sig

vrfy

[busy]
pbs

[idle]

prbs

upd

Application to Bound UCMs

The structure is
mapped onto a set of
processes composed
through channels or
shared events.

Chan1 Chan2

s pe ci fication System[req, sig, r ing] :noexit
(* Abstract Data Types here... *)
be haviou r
 h ide Chan1, Chan2 in
 (Caller [req, sig, Chan1] | | | Ca llee[r ing, Chan2])
 | [Chan1, Chan2]|
 Switch [Chan1, Chan2](idle, idle)
w he re
 (* Component processes here... *)
e nds pec (* System *)

proc es s Caller [req, s ig, Chan 1] : noexi t :=
 req ?ca lleeNu m:PhoneNumber;
 Cha n1 !requ est !calleeNum;
 Ca ller[req, sig, Ch an1]
 []
 Cha n1 ?an n:Announcem en t;
 s ig !ann ;
 Ca ller[req, sig, Ch an1]
e ndpro c (* Caller *)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 59

ICSE’01 - Use Case MapsStrategic Technology

UCM-Oriented Testing Pattern
Language

◆ Testing language connects testing patterns
– UCM paths + testing patterns + target coverage =

test goals

◆ Testing patterns
– Alternatives
– Concurrent Paths
– Loops
– Multiple Start Points
– Single Stubs and Plug-ins
– Causally Linked Stubs

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 60

ICSE’01 - Use Case MapsStrategic Technology

Testing Pattern for Alternatives

b

c

d
e

f
ga

◆ All paths:
<a,b,d,e,g>, <a,b,d,f,g>, <a,c,d,e,g>, <a,c,d,f,g>

◆ All combinations of sub-conditions
(one with x, another with y…)

[x or y]

◆ All path segments: <a,b,d,e,g>,<a,c,d,f,g>

◆ All results (end points): <a,b,d,e,g>

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 61

ICSE’01 - Use Case MapsStrategic Technology

Application to Acceptance and
Rejection Test Cases

CalleeCaller Switch

req ring

sig

vrfy

[busy]
pbs

[idle]

prbs

upd

Coverage: All path segments
Patterns: Alternative and Parallel
 Abstract seq. 1: <req, *vrfy, *pbs, sig>
 Abstract seq. 2: <req, *vrfy, *upd, *prbs, ring, sig>
Generation of acceptance & rejection tests
for each abstract sequence
(* = not visible)

proc es s Test 1A[req, sig, r in g, accept] : noexi t :=
 req; sig!bu syTon e; accept ; sto p
e ndpro c (* Test1A *)

proc es s Test 1R[req, sig, r in g, reject] : noexi t :=
 r eq; sig!r ingBackTon e; reject; sto p
e ndpro c (* Test1R *)

proc es s Test 2A[req, sig, r in g, accept] : noexi t :=
 req; r ing; sig!r ingBa ckTone; accept; sto p
e ndpro c (* Test2A *)

proc es s Test 2R[req, sig, r in g, reject] : noexi t :=
 req; r ing; sig! busyTon e; reject ; sto p
e ndpro c (* Test2R *)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 62

ICSE’01 - Use Case MapsStrategic Technology

Complementary Strategies

◆ From test goals to test cases
– Test goal + mapping = LOTOS test case

◆ Strategies for value selection
◆ Strategies for rejection test cases

– Forbidden scenarios
– Testing patterns
– Incomplete conditions
– Off-by-one value/result

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 63

ICSE’01 - Use Case MapsStrategic Technology

Tool Output

◆ LOLA (LOtos LAboratory, U. of Madrid)
◆ For each test case:

– Verdict : Must pass, May pass (undesirable non-
determinism), or Reject

– Acceptance tests: expect Must pass
– Rejection tests: expect Reject
– Logical or mapping error (in test or in specification), feature

interaction

◆ Structural coverage
– Unreachable code in formal model (incorrect specification)
– Incomplete test suite

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 64

ICSE’01 - Use Case MapsStrategic Technology

Key Points - UCM Validation

◆ Scenario integration leads to potential problems (e.g.
feature interaction) that require validation

◆ Formal specifications can be constructed from UCMs
– Brings executability
– Enables validation and automated feature interaction

detection
– Reuses existing tools, techniques and practices

◆ Analytic approach: SPEC-VALUE

– UCM and LOTOS (dynamic duo!)
– Bound UCMs require more design decisions
– Validation testing

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 65

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Messa ge
Sequence Charts From UCMs

◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 66

ICSE’01 - Use Case MapsStrategic Technology

◆ Common design and standardisation methodologies
already use scenarios

◆ Need improvement to cope with new realities of
complex, dynamic, and evolving systems

Requirements
and Service
Description

Stage 1

Message
Sequence

Information

Stage 2

Protocols
and

Procedures

Stage 3

SDL or
UML Statechart

diagrams

MSC or
UML interaction

diagrams

Informal requirements?
Use Cases?

UCM!

Common Methodologies

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 67

ICSE’01 - Use Case MapsStrategic Technology

Motivation for Transformation

◆ UCMs are good for… (Stage 1)
– Describing multiple scenarios abstractly

– For analysing architectural alternatives

◆ MSCs are better for… (Stage 2)
– Developing and presenting the details of interactions

– Describing lengthy sequences of messages in scenarios

– Providing access to well-developed methodologies and tools
for analysis and synthesis

◆ UCM-to-MSC transformation helps to further bridge
the gap between Stage 1 descriptions (require-
ments) and Stage 2 descriptions (design).

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 68

ICSE’01 - Use Case MapsStrategic Technology

UserA AgentA AgentB UserB

req

msg1

ring

vrfy

upd

chk

UserA Switch SN UserB
req

chk

upd

msg2

ring

msg5

msg4
msg3

vrfy

SN

req

chk

upd

User:BUser:A Switch

vrfy

ring

User:A Agent:A Agent:B User:B

req ring
vrfy updchk

Refining UCM with Messages

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 69

ICSE’01 - Use Case MapsStrategic Technology

From UCM to MSC

◆ UCM component → MSC instance
◆ UCM path crossing from → abstract MSC message

one component to another (“implements” causal flow)
◆ UCM start (or end) point → abstract MSC message
◆ UCM pre/post-condition → MSC condition
◆ UCM responsibility → MSC action
◆ UCM OR-fork or dynamic → multiple basic MSCs

stub with multiple plug-ins
◆ UCM AND-fork → MSC parallel inline box
◆ UCM loop → MSC loop box
◆ UCM timer → MSC timer

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 70

ICSE’01 - Use Case MapsStrategic Technology

Approaches to Transformation

◆ Intermediate Formalism
– Extract formal (LOTOS, SDL…) model from UCM
– Generate MSC from model
– High quality and realistic MSC, but much effort

◆ Direct transformation
– Requires less effort, but MSC of lower quality
– Often enough for early analysis and refinement

◆ In both cases, UCM descriptions need to be
supplemented by a path data model

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 71

ICSE’01 - Use Case MapsStrategic Technology

◆ 64 potential combination of end-to-end paths
◆ Reduced to 4 when conditions are taken into account
◆ Similar problem with combinations of plug-ins in

dynamic stubs (e.g. embedded or in sequence)
◆ Path data model can help identify specific scenarios

Need for Path Data Model

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 72

ICSE’01 - Use Case MapsStrategic Technology

Agent-Based Basic Call
with Three Features

User:Term

Agent:Orig Agent:Term

User:Orig
req ring

notify

busy

ringing

fwd_sig

fwd_sig

display

OUT1

OUT2

IN1Sorig
OUT1

OUT2

IN1

OUT3

OUT4

Sterm

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 73

ICSE’01 - Use Case MapsStrategic Technology

Plug-ins for Sorig and Sscreen

Sorig
IN1 OUT1

OUT2

snd-reqstart successIN1 OUT1

OUT2fail

Sscreen

Originating

start continueDefault

User:Orig

start successcheck-up

getPIN

[Active] [PINvalid]

[notPINvalid]

fail

[notActive]

deny

[TimeOut]

checkPIN
PIN-entered

TeenLine

checkOCS

deny

start
success

[OnList]
fail

[notOnList]

Originating
Call Screening

(OCS)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 74

ICSE’01 - Use Case MapsStrategic Technology

Plug-ins for Sterm and Sdisplay

Sterm
IN1 OUT1

OUT3

OUT4
OUT2

Terminating

busyTreatment

ringingTreatment

start
success

fail

[notBusy] IN1

[Busy]

reportSuccess

OUT2
disp

ringTreatment
OUT1

Sdisplay

start continue

Default

start
dispdisplay

success
Call Name

Display (CND)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 75

ICSE’01 - Use Case MapsStrategic Technology

MSC Generation - Example
◆ From the example UCM specification:

– Seven scenario variables are required
◆ 3 for feature subscription, 4 for user conditions
◆ Potential of 2^7 = 128 scenarios (assuming all choice points

are guarded and deterministic)

– 15 MSC scenarios can be generated:
◆ Basic Call: 2 (success or busy)
◆ CND: 1 (display)
◆ OCS: 3 (success, busy, or denied)
◆ TeenLine: 6 (active, valid PIN, timeout, busy…)
◆ CND-OCS: 1 (success/display)
◆ CND-TeenLine: 2
◆ OCS-TeenLine: 0 (same as OCS alone!)
◆ CND-OCS-TeenLine: 0 (same as CND-OCS!)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 76

ICSE’01 - Use Case MapsStrategic Technology

OCS, Successful Call
◆ subOCS = T
◆ subCND = F
◆ subTL = F
◆ Busy = F
◆ OnOCSList = F
◆ PINvalid = X
◆ TLactive = X
◆ Start point = req

mscdocument OCSsuccess;
msc OCSsuccess;
User[Orig]: instance ;
Agent[Orig]: instance ;
Agent[Term]: instance ;
User[Term]: instance ;
User[Orig]: out req,1 to Agent[Orig];
Agent[Orig]: in req,1 from User[Orig];
 action 'checkOCS';
 condition [notOnList];
 action 'snd_req';
 out m1,2 to Agent[Term];
Agent[Term]: in m1,2 from Agent[Orig];
 condition [notBusy];
all : par begin ;
 Agent[Term]: action 'ringTreatment';
 out ring,3 to User[Term];
 User[Term]: in ring,3 from Agent[Term];
all : par ;
 Agent[Term]: action 'ringingTreatment';
 out m2,4 to Agent[Orig];
 Agent[Orig]: in m2,4 from Agent[Term];
 action 'fwd_sig';
 out ringing,5 to User[Orig];
 User[Orig]: in ringing,5 from Agent[Orig];
all : par end ;
Agent[Term]: endinstance ;
Agent[Orig]: endinstance ;
User[Orig]: endinstance ;
User[Term]: endinstance ;
endmsc ;

To MSC (Z.120)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 77

ICSE’01 - Use Case MapsStrategic Technology

OCS, Successful Call
◆ subOCS = T
◆ subCND = F
◆ subTL = F
◆ Busy = F
◆ OnOCSList = F
◆ PINvalid = X
◆ TLactive = X
◆ Start point = req

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 78

ICSE’01 - Use Case MapsStrategic Technology

OCS - CND Interaction
◆ subOCS = T
◆ subCND = T
◆ subTL = F
◆ Busy = F
◆ OnOCSList = F
◆ PINvalid = X
◆ TLactive = X
◆ Start point = req

Desirable interaction!

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 79

ICSE’01 - Use Case MapsStrategic Technology

OCS - TeenLine Interaction
◆ subOCS = T
◆ subCND = F
◆ subTL = T
◆ Busy = T
◆ OnOCSList = F
◆ PINvalid = F
◆ TLactive = T
◆ Start point = req

Undesirable interaction!
TeenLine prevented by
OCS, even when
subscribed and active

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 80

ICSE’01 - Use Case MapsStrategic Technology

Why Stop at MSCs?

UCM
spec
(XML)

MSC’2000

HMSCUML
collaboration

diagrams

UML
sequence
diagrams

Rich
Trace
(XML)

MSC ’96

LOTOS
test cases

TTCN-3
test cases

Performance
models

PostScript

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 81

ICSE’01 - Use Case MapsStrategic Technology

Revisiting Test Case Generation:
UCM/Requirements Validation

Scenario Def.

MSC SDL Spec

UCM

Test Goals

Test Patterns

LOTOS Tests LOTOS Spec

SPEC-VALUE

Scenario definition + MSC/SDL

Scenario definition + L OTOS

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 82

ICSE’01 - Use Case MapsStrategic Technology

Revisiting Test Case Generation:
Conformance Testing

UCM direct

SDL direct
(conventional)

SDL Spec

TTCN (or other)

LOTOS Spec

Scenario Def.

UCM

MSC

Test Goals

LOTOS direct
(conventional)

UCM-SDL indirect
(validated UCM tests)

UCM- LOTOS indirect
(validated UCM tests)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 83

ICSE’01 - Use Case MapsStrategic Technology

Key Points - MSC Generation

◆ Much value in a tool-supported translation
– Effortless (push of a button)
– MSCs in-sync with UCMs, forward traceability
– Basis for further refinement

◆ Synthetic abstract message may be refined into more
concrete protocol messages…

– Help to bridge the requirements/design gap
– Other applications of path-traversal mechanism

◆ Need for path data model and scenario
specifications

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 84

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs

◆ Generation of Performance
Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 85

ICSE’01 - Use Case MapsStrategic Technology

Early Performance Evaluation

◆ Requires additional information to be added to UCM
paths

– Device characteristics (for processors, disks, …)
– Response-time requirements for path segments (delay value

and percentage of responses which must complete within
that delay)

– Arrival characteristics for start points
– Device demand parameters for responsibilities (amount of

service required from devices) and data access modes for
responsibilities

– Relative weights for OR forks to select branches
– Allocation of components to processors

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 86

ICSE’01 - Use Case MapsStrategic Technology

Early Performance Evaluation -
PERFECT

◆ Specify behavior and concurrency architecture by
annotating UCMs with performance information

◆ PERFormance Evaluation by Construction Tool
(PERFECT)

– Automatically translates annotated UCMs into representation
of simulation tool (PARASOL)

– Uses a simulated virtual implementation of the specification
and heuristics for scheduling to evaluate the feasibility of
software concurrency architectures

– Reports the percentage of deadlines achieved, resource
utilizations, and overhead costs

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 87

ICSE’01 - Use Case MapsStrategic Technology

Early Performance Evaluation -
LQN

◆ Specify behavior and concurrency architecture by
annotating UCMs with performance information

◆ Automatically translate annotated UCMs into LQN
representation

◆ Layered Queuing Network (LQN)
– Provides a client-server performance view of systems
– Uses LQN Solver (LQNS) to solve LQN models
– Typical results are throughputs, response time, and

utilization
– Used to determine and eliminate bottlenecks and for

capacity planning

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 88

ICSE’01 - Use Case MapsStrategic Technology

Response Time
Requirement
• From T1 to T2
• Name
• Response time
• Percentage

Agent:A Agent:B User:B

ring
vrfy updchk

User:A

req

T1

Timestamp

T2

Performance Annotations

Device Characteristics

denied

Arrival
Characteristics
• Exponential, or
• Deterministic, or
• Uniform, or
• Erlang, or
• Other

Responsibilities
•Data access modes
•Device demand parameters

OR Forks
• Relative weights

Components
• Allocated responsibilities
• Processor assignment

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 89

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs

◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMN AV -
The UCM Navi gator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 90

ICSE’01 - Use Case MapsStrategic Technology

UCMNAV

◆ Developed by Andrew Miga (Carleton U.)
since 1997

◆ Editing and navigating of UCMs
◆ Supports UCM path and component notations
◆ Maintains bindings

– Plug-ins to stubs, responsibilities to components,
sub-components to components, etc.

◆ Editing is transformation-based
– Operations maintain syntactic correctness and

enforce some static semantics constraints

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 91

ICSE’01 - Use Case MapsStrategic Technology

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 92

ICSE’01 - Use Case MapsStrategic Technology

UCMNAV Facts

◆ Load/save/import/export in XML
◆ Developed in C++, GUI in Xforms
◆ Requires an X-server
◆ Multiple platforms are currently supported

– Solaris, Linux (Intel and Sparc), HP/UX, and
Windows (95, 98, 2000 and NT)

◆ Current stable version: 1.13.4
– Freely available at http://www.UseCaseMaps.org

◆ Beta version: 2.0.0 (MSC generation)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 93

ICSE’01 - Use Case MapsStrategic Technology

UCM Documents

◆ XML (conforms to UCM DTD)
◆ Export of UCM figures

– Encapsulated PostScript (EPS)
– Maker Interchange Format (MIF)
– Computer Graphics Metafile (CGM)

◆ Used extensively in this tutorial

◆ Flexible report generation
– Content options
– PostScript, with PDF hyperlink information

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 94

ICSE’01 - Use Case MapsStrategic Technology

Report Generation in PS/PDF

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 95

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs

◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise
◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 96

ICSE’01 - Use Case MapsStrategic Technology

Exercise

Elevator Control System -
Problem Description

◆ For each elevator, there are
– A set of elevator buttons. A user presses a button to select a destination.
– A corresponding set of elevator lamps. Indicate the floors to be visited by the elevator.
– An elevator motor. Controlled by commands to move up, move down, and stop.
– A set of elevator doors. Controlled by commands to open and close a door.

◆ For each floor, there are
– Up and down floor buttons. A user presses a button to request an elevator.
– A corresponding pair of floor lamps. Indicate the directions that have been requested.

◆ At each floor, and for each elevator, there is a pair of direction lamps to indicate whether an
arriving elevator is heading in the up or down direction. For the top and bottom floors, there
is only one floor button, one floor lamp, and (for each elevator) one direction lamp. There is
also an arrival sensor at each floor in each elevator shaft to detect the arrival of an elevator
at the floor.

◆ The hardware characteristics of the I/O devices are that the elevator buttons, floor buttons,
and arrival sensors are asynchronous; that is, an interrupt is generated when there is an
input from one of these devices. The other I/O devices are all passive. The elevator and
floor lamps are switched on by the hardware, but must be switched off by the software. The
direction lamps are switched on and off by the software.

The elevator control system case study is adapted from Hassan Gomaa's Designing Concurrent, Distributed, And Real-Time Applications with
UML (p459-462), copyright Hassan Gomaa 2001, published by Addison Wesley. Used with permission.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 97

ICSE’01 - Use Case MapsStrategic Technology

Exercise

Elevator Control System -
Actors and Use Cases

◆ The Elevator Control System has two actors: one representing
the Elevator User who wishes to use the elevator and the
second representing the Arrival Sensor. The Elevator User
interacts with the system via the elevator buttons and the floor
buttons.

◆ The Elevator User actor initiates two use cases, the Select
Destination use case and the Request Elevator use case:

– Select Destination. The user in the elevator presses an elevator
button, either for a floor above or below the current position, to
select a destination floor to which to move.

– Request Elevator. The user at the floor presses an up or down
floor button to request an elevator.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 98

ICSE’01 - Use Case MapsStrategic Technology

Exercise

Elevator Control System -
Select Destination Use Case

◆ Actors: Elevator User (primary), Arrival Sensor
◆ Precondition: User is in the elevator.
◆ Description:

– User presses an elevator button for a floor above the current position. The elevator button sensor
sends the user request to the system, identifying the destination floor the user wishes to visit.

– The new request is added to the list of floors to visit. If the elevator is stationary, the system
determines in which direction the system should move in order to service the next request. The
system commands the elevator door to close. When the door has closed, the system commands the
motor to start moving the elevator, either up or down.

– As the elevator moves between floors, the arrival sensor detects that the elevator is approaching a
floor and notifies the system. The system checks whether the elevator should stop at this floor. If so,
the system commands the motor to stop. When the elevator has stopped, the system commands the
elevator door to open.

– If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the destination floor selected by the user.

◆ Alternatives:
– User presses an elevator button for a floor below the current position to move down. System

response is the same as for the main sequence.
– If the elevator is at a floor and there is no new floor to move to, the elevator stays at the current floor,

with the door open.

◆ Postcondition: Elevator has arrived at the destination floor selected by the user.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 99

ICSE’01 - Use Case MapsStrategic Technology

Exercise

Elevator Control System -
Request Elevator Use Case

◆ Actors: Elevator User (primary), Arrival Sensor
◆ Precondition: User is at a floor and wants an elevator.
◆ Description:

– User presses an up floor button. The floor button sensor sends the user request to the system,
identifying the floor number.

– The system selects an elevator to visit this floor. The new request is added to the list of floors to visit.
If the elevator is stationary, the system determines in which direction the system should move in order
to service the next request. The system commands the elevator door to close. After the door has
closed, the system commands the motor to start moving the elevator, either up or down.

– As the elevator moves between floors, the arrival sensor detects that the elevator is approaching a
floor and notifies the system. The system checks whether the elevator should stop at this floor. If so,
the system commands the motor to stop. When the elevator has stopped, the system commands the
elevator door to open.

– If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the floor in response to the user request.

◆ Alternatives:
– User presses down floor button to move down. System response is the same as for the main

sequence.
– If the elevator is at a floor and there is no new floor to move to, the elevator stays at the current floor,

with the door open.

◆ Postcondition: Elevator has arrived at the floor in response to user request.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 100

ICSE’01 - Use Case MapsStrategic Technology

Exercise

Elevator Control System -
Exercise

◆ Create UCMs for each use case
◆ Use the following components

– User, Arrival Sensor (i.e. the actors)
– Elevator Control System

◆ Do not attempt to use any of the following
notational elements
– Pools, Slots, Dynamic responsibilities, Timers

Solution

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 101

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs

◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small
and Lar ge Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 102

ICSE’01 - Use Case MapsStrategic Technology

Use Case Map Styles

Individual

Standard Root Map

Large System

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 103

ICSE’01 - Use Case MapsStrategic Technology

UCM Style - Individual

◆ Describe each feature individually (hierarchy of
UCMs may be used for a feature)

◆ Each UCM belongs only to one feature and is not
reused for any other feature

◆ Mainly concerned with …
– Understandability of single features, ability to specify test

cases, tool dependency (non-authors)

◆ Not concerned with …
– Scaleability, feature interaction, evolveability, reuseability

across features

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 104

ICSE’01 - Use Case MapsStrategic Technology

UCM Style - Standard Root Map

◆ Describe base feature on stub-rich root map with
default plug-ins (hierarchy inherent)

◆ Describe variations of the base feature (i.e. other
features) with the base root map and one or more
different plug-ins to the stubs

◆ Mainly concerned with …
– Feature interaction, evolveability, reuseability across

features

◆ Not concerned with …
– Scaleability

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 105

ICSE’01 - Use Case MapsStrategic Technology

UCM Style - Large Systems

◆ Describe each feature on a separate root map
(hierarchy of UCMs may be used for a feature)

◆ Integrate features by explicitly defining interaction
points such as locations where …

– a variation of the feature occurs or the system is ready to
deal with an event that may not be related to the feature

◆ Mainly concerned with …
– Scaleability, feature interaction, evolveability, reuseability

across features, understandability of single features, ability
to specify test cases

◆ Not concerned with …
– Tool dependency (non-authors)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 106

ICSE’01 - Use Case MapsStrategic Technology

Table of Contents

◆ Introduction to Use Case Maps (UCMs) and the UCM Notation

◆ Dynamic Aspects of the UCM Notation

◆ Enhancing UCMs with Formal Scenario Definitions
◆ Derivation of Structural Specifications from UCMs

◆ Validation of Use Case Map Specifications

◆ Generation of Message Sequence Charts From UCMs

◆ Generation of Performance Models from UCMs

◆ Tool Demonstration: UCMNAV - The UCM Navigator

◆ Use Case Maps Exercise

◆ Use Case Map Styles for Small and Large Systems

◆ UCM Puzzles

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 107

ICSE’01 - Use Case MapsStrategic Technology

UML Structural
Diagrams

Class, Object,
Component, &
Deployment
Diagrams

UML Use Case
Diagram &

Activity Diagram

UML Behavioral
Diagrams

Sequence, Collabor.,
& Statechart Diagrams

UML Use Cases

Textual description of
functionalities as seen

by external actors

UCM - UML Puzzle

Use Case Maps
Superimpose visually
system level behavior

onto structures of
abstract components

UCMs represent visually
use cases in terms of causal

responsibilities

UCMs provide a framework
for making high level and
detailed design decisions

UCMs visually
associate

behavior with
structure at the
system level.

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 108

ICSE’01 - Use Case MapsStrategic Technology

UML: Use Case Diagram

◆ Shows actors, use cases, and their relationships
◆ Shows system functionality from user’s point of view
◆ Shows several use cases, variations and common

parts of use cases, and generalization of actors

Use Case II

Actor

Extension
of Use Case

Common
Use CaseGeneralized

Actor
<<uses>>

Use Case I

<<extends>>

<<uses>>

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 109

ICSE’01 - Use Case MapsStrategic Technology

UML: Activity Diagram

◆ Shows dynamic behavior in terms of activities
◆ Shows behavior of many objects across many use

cases
Object A

Object B

swimlanes

decision
activity

Activity I Activity III

Activity II*

synchronization
bar

[not ok]

[ok]

[no]

[yes]

success

fail

guard

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 110

ICSE’01 - Use Case MapsStrategic Technology

UCM - UML

◆ UCMs express almost all concepts of use
case diagrams and all of activity diagrams

◆ Use case diagrams
– UCMs express all concepts except actors and

actor generalization; these concepts, however,
could be modeled after minor changes to UCMs

– UCMs show more precisely the location of and
circumstances for extensions to use cases and for
common use cases

– How useful are use case diagrams?

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 111

ICSE’01 - Use Case MapsStrategic Technology

UCM - UML

◆ Activity diagrams
– UCMs provide dynamic stubs & selection policies

◆ Selection policies specify which plug-in(s) to choose
dynamically depending on preconditions and whether the
plug-ins’ execution occurs concurrently or sequentially

– UCMs provide powerful dynamic capabilities
– UCMs provide timers and timeout paths
– UCMs allow several start points per map and

several in-paths per stub
– UCMs have a much more flexible and expressive

mapping of structure to behavior

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 112

ICSE’01 - Use Case MapsStrategic Technology

UCM - UML

◆ UCMs are at a higher abstraction level than
sequence and collaboration diagrams
– Causality instead of messages

◆ UCMs are at a higher abstraction level than
statechart diagrams
– Not focussed on component states and messages

◆ UCM components may be mapped to UML
structural diagrams

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 113

ICSE’01 - Use Case MapsStrategic Technology

Informal
Requirements

ITU-T Study Group 10 Puzzle

UCMs link to
operationalizations

(tasks) in NFR graphs

Structural
Diagrams

Specification and
Description
Language

Testing Language

TTCN (Tree and
Tabular Combined

Notation)

Behavioral
Diagrams

Message Sequence
Charts, Specification
and Description Lang.

UCMs represent visually
use cases in terms of causal

responsibilities

UCMs provide a
framework for making

high level and
detailed design

decisions

UCMs visually
associate

behavior with
structure at the
system level.

?
? ?

URN-FR
Use Case Maps

Superimpose visually system level behavior
onto structures of abstract components

URN-NFR
Goal-oriented
Requirement

Language

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 114

ICSE’01 - Use Case MapsStrategic Technology

About ITU-T

◆ The International Telecommunication Union -
Telecommunication Standardization Sector (ITU-T)

◆ ITU is a United Nation organization (189 members)
◆ 14 Study Groups in ITU-T
◆ SG10: Languages and software aspects for

telecommunication systems (to become SG17)
◆ 13 questions for study in SG10 (MSC, SDL, UML…)
◆ Q12/10: URN: User Requirements Notation

– Create a standard by end of 2003

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 115

ICSE’01 - Use Case MapsStrategic Technology

URN - Initial Requirements

◆ Focus on early stages of design, with scenarios
◆ Capture user requirements when little design detail is

available
◆ No messages, components, or component states

required
◆ Reusability of scenarios and allocation to

components
◆ Dynamic refinement capabilities
◆ Modelling of agent systems, early performance

analysis, and early detection of undesirable
interactions

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 116

ICSE’01 - Use Case MapsStrategic Technology

URN - Additional Requirements

◆ Express, analyse and deal with non-functional
requirements (NFRs)

◆ Express the relationship between business
objectives/goals and system requirements

◆ Capture reusable analysis (argumentation) and
design knowledge (patterns) for addressing non-
functional requirements

◆ Connect to other ITU-T languages

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 117

ICSE’01 - Use Case MapsStrategic Technology

Candidate Scenario Notations
For URN-FR

?

Textual
Use Cases (UML)

L’Ecritoire (CREWS)
Somé’s scenarios
RATS (Eberlein)

?

Tree
Scenario Trees (Hsia)
UCT (Boni Bangari)

Chisel (Aho)

?

Message Sequence
MSC (ITU-T)

Sequence dia. (UML)
Life Seq. Charts (Harel)

?
Graph

StateCharts
Petri Nets

FSM…

? Path
Activity dia. (UML)
RATS (Eberlein)

UCM (Buhr)

URN-FRMany are not
graphical

Most require
components

with interactions/
messages

Most do not support
dynamic behavior
and structures well

UCM (Buhr)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 118

ICSE’01 - Use Case MapsStrategic Technology

Current Proposal for URN

◆ Combined use of two notations
◆ Goal-oriented Requirement Language

(GRL) for Non-Functional Requirements
– http://www.cs.toronto.edu/km/GRL/

◆ Use Case Maps (UCM) for Functional
Requirements
– http://www.UseCaseMaps.org/

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 119

ICSE’01 - Use Case MapsStrategic Technology

Structural
Diagrams

Class, Object,
Component, &
Deployment
Diagrams

Scope of Use Case Maps

UML Use Case
Diagram &

Activity Diagram

Use Cases & NFR

Textual description of
functionalities & non-

functional rqmnts.

Performance
Engineer

Requirements
Engineer

System Architect/
Designer

Customer

Test Engineer

Sequence D.Collaboration D.SDLHier. State Mach.MSCSeq./Coll. Diag.,
HSM, SDL, MSC

Class Diagr.

LOTOS, TTCN

LQN

Behavioral Diagrams

MSCs, SDL,
Sequence, Collabor.,

& Statechart Diagrams

Use Case Maps
Superimpose visually
system level behavior

onto structures of
abstract components

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 120

ICSE’01 - Use Case MapsStrategic Technology

Key Points - UCM Puzzles

◆ UCMs offer more capabilities than use case diagrams
and activity diagrams

◆ UCMs, as part of the User Requirements Notation
(URN), propose to fill a void in methodologies based
on ITU-T languages

◆ Compared to other scenario notations, UCMs are
graphical, do not require components with
interactions/messages, and support dynamic
behavior and structures well

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 121

ICSE’01 - Use Case MapsStrategic Technology

Key Points - UCM Puzzles

◆ UCMs fit well into scenario-based software
development methodologies

◆ UCMs become the focal point for early activities in
software development, bringing together
stakeholders with expertise in many different areas

◆ UCMs provide a good basis for design-time feature
interaction detection and for model construction
(tests, performance, MSC, LOTOS, and others)

© 2001

IC
S

E
’0

1
-

U
C

M
s

Page 122

ICSE’01 - Use Case MapsStrategic Technology

Main References

◆ Web site http://www.UseCaseMaps.org/
– Amyot, D. and Logrippo, L., Use Case Maps and LOTOS for the Prototyping and

Validation of a Mobile Group Call System, In:Computer Communications 23(8), 2000.

– Amyot, D. and Mussbacher, G., On the Extension of UML with Use Case Maps
Concepts, UML2000, York, UK, October 2000.

– Buhr, R.J.A., Use Case Maps as Architectural Entities for Complex Systems, In:
Transactions on Software Engineering, IEEE, Vol. 24, No. 12, December 1998, pp.
1131-1155.

– Buhr, R.J.A. and Casselman, R.S., Use CASE Maps for Object-Oriented Systems,
Prentice Hall, 1996.

– Cameron, D. et al., Draft Specification of the User Requirements Notation, Canadian
contribution CAN COM 10-12 to ITU-T, November 2000.

– Miga, A., Amyot, D., Bordeleau, F., Cameron, D., and Woodside, M., Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications, 10th SDL Forum,
Copenhagen, Denmark, June 2001.

– Scratchley, W.C., Evaluation and Diagnosis of Concurrency Architectures, Ph.D.
thesis, Carleton University, Canada, November 2000.

